
Sofia University “St. Kliment Ohridski”

Faculty of Mathematics and Informatics

Simultaneous approximation

by the Bernstein operator

Borislav Radkov Draganov

Abstract
of

a Dissertation for Doctor of Sciences Degree in Mathematics

Sofia · 2023



Declaration of Authorship

The author hereby declares that the dissertation contains original results
he obtained. All other researchers’ results used are acknowledged as refer-
ences.

Borislav Radkov Draganov



S. N. Bernstein introduced in 1912 an approximation operator, which is
now named after him, in order to give a simple proof of Weierstrass’s theorem
that every continuous function on a finite closed interval can be uniformly
approximated by algebraic polynomials [4].

The Bernstein operators or polynomials are defined for f ∈ C[0, 1], x ∈
[0, 1] and n ∈ N+ by

(1) Bnf(x) :=
n∑

k=0

f

(
k

n

)
pn,k(x), pn,k(x) :=

(
n

k

)
xk(1− x)n−k.

We have
lim
n→∞

Bnf(x) = f(x) uniformly on [0, 1],

that is
lim
n→∞

∥Bnf − f∥ = 0, f ∈ C[0, 1],

where ∥ ◦ ∥ stands for the (essential) supremum norm on the interval [0, 1].
Moreover, clearly

∥Bnf∥ ≤ ∥f∥, f ∈ C[0, 1], n ∈ N+.

Thus {Bn}∞n=1 is a strong approximation process on C[0, 1] (see [8, Defi-
nition 12.0.1]).

Various estimates of the supremum norm of the error Bnf(x)−f(x) were
established. Some of the earliest ones were stated in terms of the so-called
moduli of smoothness (or continuity). For example, Popoviciu [48] (or see
[43, Theorem 1.6.1]) showed that

∥Bnf − f∥ ≤ 5

4
ω1(f, n

−1/2).

Above ω1(f, t) is the modulus of continuity of f , defined by

(2) ω1(f, t) := sup
|x−y|≤t

|f(x)− f(y)|.

Since Bnf interpolates f at the ends of the interval, one can expect that it
approximates the function better in their neighbourhood. This is indeed so.
The following estimate holds for f ∈ AC1

loc(0, 1) such that φ2f ′′ ∈ L∞[0, 1],
where φ(x) :=

√
x(1− x) (see e.g. [12, Chapter 10, § 7] or [15, Chapter 9])

(3) ∥Bnf − f∥ ≤ c

n
∥φ2f ′′∥, n ∈ N+.
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Here and henceforward c denotes absolute constants.
This estimate can be further generalized for any f ∈ C[0, 1] and n ∈ N+

in the form

(4) ∥Bnf − f∥ ≤ c ω2
φ(f, n

−1/2),

where ω2
φ(f, t) is the Ditzian-Totik modulus of smoothness of second order

with varying step controlled by the weight φ(x) in the sup-norm on [0, 1]. It
is defined by

(5) ω2
φ(f, t)

:= sup
0<h≤t

sup
x±hφ(x)∈[0,1]

|f(x+ hφ(x))− 2f(x) + f(x− hφ(x))|, t > 0.

Adell and G. Sangüesa [1] proved that (4) holds with c = 4. Later on
Gavrea, Gonska, Păltănea and Tachev [27] improved this estimate to c = 3,
then Păltănea [47, p. 96] to c = 5/2 (or see [7, p. 183]).

It turns out that (3) and (4) cannot be improved. The converse to (4) is
also valid—there holds (see [40] and [53])

(6) ∥Bnf − f∥ ≥ c ω2
φ(f, n

−1/2), n ≥ n0,

where n0 ∈ N+ is independent of f . Earlier, Ditzian and Ivanov [14, Theorem
8.1] obtained a similar two-term converse inequality.

The last estimate implies that Bnf cannot approximate f in the supre-
mum norm on [0, 1] with a rate faster than 1/n unless Bnf preserves f , that
is, f is an algebraic polynomial of degree at most 1. This is known as satura-
tion of an approximation process (see [8, Definition 12.0.2], or [12, p. 336]).
Thus the sequence of approximating operators {Bn}∞n=1 is saturated, as its
saturation rate is n−1. It was first observed by Voronovskaya [54] (or see e.g.
[12, Chapter 10, Theorem 3.1]). She proved that if f ∈ C2[0, 1], then

(7) lim
n→∞

n(Bnf(x)− f(x)) =
x(1− x)

2
f ′′(x)

uniformly on [0, 1].
The Bernstein polynomial possesses another property. As it was estab-

lished by Chlodowsky [11], Wigert [55] and Lorentz [42] (see e.g. [12, Chapter
10, Theorem 2.1], or [7, p. 232]), it not only approximates the function, but
also its derivatives. More precisely, we have

(8) lim
n→∞

(Bnf)
(s) (x) = f (s)(x) uniformly on [0, 1],
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provided that f ∈ Cs[0, 1]. That phenomenon is referred to as simultaneous
approximation.

The main subject of the dissertation is to present estimates of the rate
of this approximation. We prove both direct estimates and matching one- or
two-term converse estimates, which show that the direct estimates are sharp.
The estimates are established in the essential norm on [0, 1] with Jacobi
weights. As a further application of those results we characterize the rate
of the simultaneous approximation of the iterated Boolean sums of Bn and
of two modifications of Bn, which are polynomials with integer coefficients.
Finally, we investigate the rate of convergence in Voronovskaya’s theorem
(7).

Weighted simultaneous approximation by the

Bernstein operator

Voronovskaya’s result (7) shows that the differential operator which describes
the rate of approximation of Bn (up to a constant multiple) is Df(x) :=
φ2(x)f ′′(x) with φ(x) :=

√
x(1− x). A quantitative description of this rate

follows from (4)-(6):

(9) ∥Bnf − f∥ ∼ ω2
φ(f, n

−1/2), n ≥ n0,

with some n0 ∈ N+, which is independent of f ∈ C[0, 1]. We say that Φ(f, t)
and Ψ(f, t) are equivalent and write Φ(f, t) ∼ Ψ(f, t) if there exists a positive
constant c such that c−1Φ(f, t) ≤ Ψ(f, t) ≤ cΦ(f, t) for all f and t under
consideration.

As we indicated earlier in (8), the derivatives of the Bernstein polynomial
of a smooth function approximate the corresponding derivatives of the func-
tion. López-Moreno, Mart́ınez-Moreno and Muñoz-Delgado [41] and Floater
[26] extended (7), showing that for f ∈ Cs+2[0, 1] we have

(10) lim
n→∞

n
(
(Bnf(x))

(s) − f (s)(x)
)
=

1

2
(Df(x))(s) uniformly on [0, 1].

Hence the differential operator that describes the simultaneous approxima-
tion by Bn is (d/dx)sD. Results about the rate of convergence in (10) were
established in [29, 30, 32].
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The first quantitative result for the simultaneous approximation by means
of Bn was given by Popoviciu [49] (or see [7, p. 232]). It states

∥(Bnf)
(s) − f (s)∥ ≤ 3 + 2

√
s

2
ω1

(
f (s),

1√
n− s

)
+

s(s− 1)

2n
∥f (s)∥, n > s.

Numerous improvements of this estimate have been established since then
(see [7, Section 4.6]).

To the best of my knowledge, all but one estimate established previously
(see Remark 3.6 below) use the classical fixed-step modulus of smoothness
of first and second order. The estimates we prove use the Ditzian-Totik
modulus and take into account that the approximation is better near the
ends of the interval, besides we consider approximation generally in weighted
spaces. Moreover, we also establish matching converse inequalities, which
show that the direct estimates are sharp. A point-wise direct inequality,
which demonstrates that the approximation improves near the ends of the
interval was established by Jiang [36] (or see [7, p. 237]), who proved for the
first derivative that

|(Bnf(x))
′ − f ′(x)| ≤ 13

4
ω2

(
f ′,

2φ(x)√
n− 1

)
+ ω1(f

′, n−1).

We consider simultaneous approximation by Bn with the Jacobi weights:

(11) w(x) := w(γ0, γ1;x) := xγ0(1− x)γ1 , x ∈ [0, 1],

where γ0, γ1 ≥ 0.
To characterize the rate of the simultaneous approximation by Bn, we use

the K-functional

KD
s (f, t)w := inf

g∈Cs+2[0,1]

{
∥w(f − g(s))∥+ t∥w(Dg)(s)∥

}
.

We establish the following direct estimate of the rate of the weighted
simultaneous approximation by the Bernstein operator.

Theorem 3.3. Let s ∈ N+ and w := w(γ0, γ1) be given by (11) as 0 ≤
γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈
L∞[0, 1], and all n ∈ N+ there holds

∥w(Bnf − f)(s)∥ ≤ cKD
s (f (s), n−1)w.
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The value of the constant c is independent of f and n.

This estimate can be simplified. The K-functional KD
s (f, t)w can be

characterized by simpler ones. Let

Km(f, t)w := inf
g∈ACm−1

loc (0,1)

{
∥w(f − g)∥+ t∥wg(m)∥

}
and

Km,φ(f, t)w := inf
g∈ACm−1

loc (0,1)

{
∥w(f − g)∥+ t∥wφmg(m)∥

}
,(12)

where φ(x) :=
√

x(1− x). For the unweighted case w = 1 we set

Km(f, t) := Km(f, t)1

and

Km,φ(f, t) := Km,φ(f, t)1.

As we show in Theorems 4.4 and 4.5, if 0 < γ0, γ1 < s, then for all
wf ∈ L∞[0, 1] and 0 < t ≤ 1 there holds

(13) KD
s (f, t)w ∼

K2,φ(f, t)w +K1(f, t)w, s = 1,

K2,φ(f, t)w + t ∥wf∥, s ≥ 2,

whereas in the case w = 1 we have:

(14) KD
s (f, t)1 ∼

K2,φ(f, t) +K1(f, t), s = 1,

K2,φ(f, t) +K1(f, t) + t ∥f∥, s ≥ 2,

for all f ∈ C[0, 1] and 0 < t ≤ 1. The characterization of KD
s (f, t)w in

the case when one of the γs is 0 and the other is positive is a “mixture” of
(13) and (14). The assertion in (13) in the case s = 1 actually holds for all
0 ≤ γ0, γ1 < 1.

Each of the K-functionals K1(f, t)w and K2,φ(f, t
2)w is equivalent to a

modulus of smoothness. The latter are function characteristics, which are
more directly related to the approximated function than the K-functionals,
but are equivalent to them. We have already mentioned two of them—(2)
and (5). To extend their definition, we first introduce the difference operator.
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The forward difference of f : [0, 1]→ R with step h > 0 of order m ∈ N+

is given by

−→
∆m

h f(x) =


m∑
i=0

(−1)i
(
m

i

)
f(x+ (m− i)h), x ∈ [0, 1−mh],

0, x ∈ (1−mh, 1].

Similarly, the backward difference is given by

←−
∆m

h f(x) =


m∑
i=0

(−1)i
(
m

i

)
f(x− ih), x ∈ [mh, 1],

0, x ∈ [0,mh).

We also make use of the symmetric difference, which is defined on [0, 1]
by

∆̄m
h f(x) =


m∑
i=0

(−1)i
(
m

i

)
f
(
x+

(m
2
− i
)
h
)
, x ∈

[
mh

2
, 1− mh

2

]
,

0, otherwise.

The classical unweighted fixed-step modulus of smoothness of order m of
f ∈ L∞[0, 1] is then defined for t > 0 by

ωm(f, t) := sup
0<h≤t

∥
−→
∆m

h f∥.

The weighted modulus of smoothness ωm(f, t)w is defined by

ωm(f, t)w := sup
0<h≤t

∥w
−→
∆m

h f∥[0,3/4] + sup
0<h≤t

∥w
←−
∆m

h f∥[1/4,1].

Here ∥ ◦ ∥J denotes the essential supremum norm on J ⊂ R.
In the case w = 1 we can use the modulus of smoothness ωm(f, t)—we

set
ωm(f, t)1 := ωm(f, t).

One generalization of the classical moduli, which is equivalent to the K-
functional Km,φ(f, t

m), was introduced by Ditzian and Totik [15, (2.1.2)]. In
the unweighted case w = 1 it is given by

ωm
φ (f, t) := sup

0<h≤t
∥∆̄m

hφf∥.
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The generalization of that modulus of smoothness to the weighted case
is more complicated. For γ0, γ1 > 0 it is defined by (see [15, Appendix B])

(15) ωm
φ (f, t)w := sup

0<h≤t
∥w∆̄m

hφf∥[m2t2,1−m2t2] + sup
0<h≤m2t2

∥w
−→
∆m

h f∥[0,12m2t2]

+ sup
0<h≤m2t2

∥w
←−
∆m

h f∥[1−12m2t2,1],

where 0 < t ≤ 1/(m
√
2).

We set
ωm
φ (f, t)1 := ωm

φ (f, t).

We have (see [38], [15, Chapters 2 and 6], or [12, Chapter 6])

Km(f, t
m)w ∼ ωm(f, t)w, 0 < t ≤ 1,(16)

and

Km,φ(f, t
m)w ∼ ωm

φ (f, t)w, 0 < t ≤ t0,(17)

with some t0 > 0, which is independent of f .
By virtue of the last relations, Theorem 3.3 yields the following Jackson-

type estimates.

Theorem 3.5. Let s ∈ N+ and w := w(γ0, γ1) be given by (11). Then for all
f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all n ∈ N+

there holds

∥w(Bnf − f)(s)∥

≤ c



ω2
φ(f

′, n−1/2)w + ω1(f
′, n−1)w, s = 1, 0 ≤ γ0, γ1 < 1,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥, s ≥ 2, γ0 = γ1 = 0,

ω2
φ(f

(s), n−1/2)w +
1

n
∥wf (s)∥, s ≥ 2, 0 < γ0, γ1 < s.

The value of the constant c is independent of f and n.

Although the equivalence between K2,φ(F, t
2) and ω2

φ(F, t) was estab-
lished for t > 0 small enough, the direct estimates above are verified for all
n ∈ N+. In addition, we show that the range of γ0 and γ1 in Theorems 3.3
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and 3.5 is the broadest possible, which allows direct estimates under natural
assumptions on the functions.

Remark 3.6. Jiang and Xie [37] (or see [7, Theorem 4.57]) proved a point-
wise direct estimate, which implies the estimate in Theorem 3.5 in the case
s ≥ 2, γ0 = γ1 = 0.

The direct estimates stated above are sharp—the following strong con-
verse estimate holds.

Theorem 3.8. Let s ∈ N+ and w := w(γ0, γ1) be given by (11) as 0 ≤
γ0, γ1 < s. Then there exists R ∈ N+ such that for all f ∈ C[0, 1] with
f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all k, n ∈ N+ with k ≥ Rn there
holds

KD
s (f (s), n−1)w ≤ c

k

n

(
∥w(Bnf − f)(s)∥+ ∥w(Bkf − f)(s)∥

)
.

In particular,

KD
s (f (s), n−1)w ≤ c

(
∥w(Bnf − f)(s)∥+ ∥w(BRnf − f)(s)∥

)
.

The value of the constant c is independent of f , n and k.

We have stated Theorems 3.3, 3.5 and 3.8 under minimal assumptions on
f . However, we have an approximation if and only if limt→0 ω

2
φ(f

(s), t)w = 0

and, in addition, limt→0 ω1(f
(s), t)w = 0 in the cases s = 1, 0 ≤ γ0, γ1 < 1

or s ≥ 2, γ0 = γ1 = 0. In the case w = 1, we have limt→0 ω1(g, t) = 0 if
and only if g ∈ C[0, 1]; similarly limt→0 ω

2
φ(g, t) = 0 if and only if g ∈ C[0, 1]

(considering two functions which are equal a.e. with regard to the Lebesgue
measure as identical); see [15, p. 37]. If γ0 > 0, then we must have that g(x)
is continuous on (0, 1) and limx→0 x

γ0g(x) = 0; if γ1 > 0, then we must have
limx→1(1− x)γ1g(x) = 0 (see e.g. [25, p. 94]).

To prove Theorem 3.3 we apply a standard method based on bounded-
ness and Jackson-type estimates for the approximation operator (see e.g. [14,
Theorem 3.4]), and to prove Theorem 3.8 we use the method developed by
Ditzian and Ivanov [14, Theorem 3.2], which is very effective for such prob-
lems. It, too, is based on several estimates that concern the boundedness of
the operator and its rate of approximation for smooth functions in various
aspects. Let us state these inequalities briefly. In all of them c denotes a
constant, whose value is independent of f and n.

The first basic estimate concerns the boundedness of the weighted L∞-
norm of (Bnf)

(s).
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Proposition 3.14. Let s ∈ N+ and w := w(γ0, γ1) be given by (11) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(Bnf)
(s)∥ ≤ c ∥wf (s)∥.

The next two are Jackson- and Voronovskaya-type inequalities, respec-
tively.

Proposition 3.17. Let s ∈ N+ and w := w(γ0, γ1) be given by (11). Set
s′ := max{2, s}. If 0 < γ0, γ1 ≤ s, then for all f ∈ C[0, 1] such that f ∈
ACs+1

loc (0, 1) and wf (s′), wφ2f (s+2) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(Bnf − f)(s)∥ ≤ c

n

(
∥wf (s′)∥+ ∥wφ2f (s+2)∥

)
.

If γ0γ1 = 0 and still 0 ≤ γ0, γ1 < s, then

∥w(Bnf − f)(s)∥ ≤ c

n

(
∥wf (s′)∥+ ∥wf (s+1)∥+ ∥wφ2f (s+2)∥

)
,

provided that wf (s+1) ∈ L∞[0, 1] too.

Proposition 3.20. Let s ∈ N+ and w := w(γ0, γ1) be given by (11). Set
s′′ := max{3, s}. If 0 < γ0, γ1 ≤ s + 1, then for all f ∈ C[0, 1] such that
f ∈ ACs+3

loc (0, 1) and wf (s′′), wφ4f (s+4) ∈ L∞[0, 1], and all n ∈ N+ there holds∥∥∥∥∥w
(
Bnf − f − 1

2n
Df

)(s)
∥∥∥∥∥ ≤ c

n2

(
∥wf (s′′)∥+ ∥wφ4f (s+4)∥

)
.

If γ0γ1 = 0 and still 0 ≤ γ0, γ1 ≤ s+ 1, then∥∥∥∥∥w
(
Bnf − f − 1

2n
Df

)(s)
∥∥∥∥∥
≤ c

n2

(
∥wf (s′′)∥+ ∥wf (s+2)∥+ ∥wφ4f (s+4)∥

)
provided that wf (s+2) ∈ L∞[0, 1] too.

In addition, we make use of the following Bernstein-type inequalities.

Proposition 3.23. Let ℓ, s ∈ N+ and w := w(γ0, γ1) be given by (11) as
0 ≤ γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there hold:
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(a) ∥wφ2ℓ(Bnf)
(2ℓ+s)∥ ≤ c nℓ∥wf (s)∥;

(b) ∥w(Bnf)
(ℓ+s)∥ ≤ c nℓ∥wf (s)∥.

In order to establish Theorems 3.3 and 3.8, we derive from those estimates
the following ones in terms of the differential operator D (to recall, Df(x) :=
x(1− x)f ′′(x)):

(a) ∥w(Bnf − f)(s)∥ ≤ c

n
∥w(Df)(s)∥, f ∈ Cs+2[0, 1];

(b)

∥∥∥∥∥w
(
Bnf − f − 1

2n
Df

)(s)
∥∥∥∥∥ ≤ c

n2
∥w(D2f)(s)∥, f ∈ Cs+4[0, 1];

(c) ∥w(DBnf)
(s)∥ ≤ cn∥wf (s)∥, f ∈ C[0, 1], f ∈ ACs−1

loc (0, 1),
wf (s) ∈ L∞[0, 1];

(d) ∥w(D2Bnf)
(s)∥ ≤ c n ∥w(Df)(s)∥, f ∈ Cs+2[0, 1].

We still assume that 0 ≤ γ0, γ1 < s for w := w(γ0, γ1), given in (11).
Then Theorems 3.3 and 3.8 follow from [14, Theorems 3.2 and 3.4].

We establish a one-term strong converse inequality for the rate of the
weighted simultaneous approximation by Bn for lower order derivatives and
additional restrictions on the weight exponents, but still including the case
w = 1.

Theorem 3.26. Let s ∈ N+ as s ≤ 6, and let w := w(γ0, γ1) be given by (11)
with γ0, γ1 ∈ [0, s/2]. Then there exists n0 ∈ N+ such that for all f ∈ C[0, 1]
with f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all n ∈ N+ with n ≥ n0 there
holds

KD
s (f (s), n−1)w ≤ c ∥w(Bnf − f)(s)∥.

To prove this converse inequality, we again apply the method developed
by Ditzian and Ivanov [14], as we establish improvements of Proposition 3.14
and 3.23, which show that the more iterates we take of Bn the smoother
its image becomes. More precisely, we prove that if 1 ≤ s ≤ 6, m ≥ 2 and
w := w(γ0, γ1) is given by (11) with γ0, γ1 ∈ [0, s/2], then for all f ∈ Cs+2[0, 1]
and n ∈ N+ such that n ≥ m+ s+ 2 there holds

∥w(D2Bm
n f)(s)∥ ≤ c′

√
logm

m
n∥w(Df)(s)∥,
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where the constant c′ is independent of f , n and m.
Theorem 3.26 holds for s = 0 as well (see [40, 53]). Its assertion for s = 1

and w = 1 has already been established in [34].
Combining Theorems 3.3 and 3.26, we verify that the error of the weighted

simultaneous approximation by the Bernstein operator is equivalent to the
K-functional KD

s (f (s), n−1)w. Thus the following characterization of the rate
of the weighted simultaneous approximation by the Bernstein operator holds
true.

Theorem 3.30. Let s ∈ N+ as s ≤ 6, and let w := w(γ0, γ1) be given by (11)
with γ0, γ1 ∈ [0, s/2]. Then there exists n0 ∈ N+ such that for all f ∈ C[0, 1]
with f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all n ∈ N+ with n ≥ n0 there
holds

∥w(Bnf − f)(s)∥ ∼ KD
s (f (s), n−1)w.

Similarly, Theorems 3.5 and 3.30 along with (13)-(14) yield

Theorem 3.31. Let s ∈ N+, as s ≤ 6, and w := w(γ0, γ1) be given by (11).
Then there exists n0 ∈ N+ such that for all f ∈ C[0, 1] with f ∈ ACs−1

loc (0, 1)
and wf (s) ∈ L∞[0, 1], and all n ∈ N+ with n ≥ n0 there hold:

∥w(Bnf − f)′∥ ∼ ω2
φ(f

′, n−1/2)w + ω1(f
′, n−1)w, s = 1, 0 ≤ γ0, γ1 ≤ 1/2,

∥(Bnf − f)(s)∥ ∼ ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) + n−1∥f (s)∥,

2 ≤ s ≤ 6, γ0 = γ1 = 0,

∥w(Bnf − f)(s)∥ ∼ ω2
φ(f

(s), n−1/2)w + n−1∥wf (s)∥,
2 ≤ s ≤ 6, 0 < γ0, γ1 ≤ s/2.

To compare, the characterization in the case s = 0 is of the form (see (9))

∥Bnf − f∥ ∼ ω2
φ(f, n

−1/2).

Results about the simultaneous approximation by the Bernstein operator
can be easily transferred to the Kantorovich operator. The Kantorovich
operators or polynomials are defined for f ∈ L[0, 1] and x ∈ [0, 1] by

Knf(x) :=
n∑

k=0

(n+1)

∫ (k+1)/(n+1)

k/(n+1)

f(t) dt pn,k(x), pn,k(x) :=

(
n

k

)
xk(1−x)n−k.

13



They are related to the Bernstein polynomials as follows

(18) Knf(x) = (Bn+1F (x))′ , F (x) :=

∫ x

0

f(t) dt.

More generally, we set for f ∈ L[0, 1] and m ∈ N+ (see [50])

(19) K⟨m⟩
n f(x) := (Bn+mFm(x))

(m) ,

where

Fm(x) :=
1

(m− 1)!

∫ x

0

(x− t)m−1f(t) dt.

The operator K
⟨m⟩
n is referred to as the generalized Kantorovich operator

of order m. That generalization of the Kantorovich polynomials or similar
modifications of related operators were studied in [9, 10, 29, 30, 32, 35].

All the above results about simultaneous approximation by Bn can be
transferred to K

⟨m⟩
n . In particular, we have the following characterization of

the rate of the simultaneous approximation by K
⟨m⟩
n .

Theorem 3.41 Let m ∈ N+, s ∈ N0 and w := w(γ0, γ1) be given by (11) as
0 ≤ γ0, γ1 < s+m. Then for all f ∈ L∞[0, 1] such that f ∈ ACs−1

loc (0, 1) and
wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(K⟨m⟩
n f − f)(s)∥ ≤ cKD

s+m(f
(s), n−1)w.

Conversely, there exists R ∈ N+ such that for all f ∈ L∞[0, 1] with f ∈
ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all ℓ, n ∈ N+ with ℓ ≥ Rn there holds

KD
s+m(f

(s), n−1)w ≤ c

(
ℓ

n

)r (
∥w(K⟨m⟩

n f − f)(s)∥+ ∥w(K⟨m⟩
ℓ f − f)(s)∥

)
.

In particular,

KD
s+m(f

(s), n−r)w ≤ c
(
∥w(K⟨m⟩

n f − f)(s)∥+ ∥w(K⟨m⟩
Rn f − f)(s)∥

)
.

The value of the constant c is independent of f , n and ℓ.

In the statement of the last theorem, the condition f ∈ ACs−1
loc (0, 1) is to

be ignored for s = 0.
By virtue of Theorem 3.30, we have the following characterization of the

rate of approximation of the Kantorovich operator.

14



Theorem 3.44. Let w := w(γ0, γ1) be given by (11) with γ0, γ1 ∈ [0, 1/2].
Then there exists n0 ∈ N+ such that for all f ∈ L[0, 1] with wf ∈ L∞[0, 1],
and all n ∈ N+ with n ≥ n0 there holds

∥w(Knf − f)∥ ∼ KD
1 (f, n−1)w.

The direct estimate for the Kantorovich operator in the case w = 1 and
s = 0 is due to Berens and Xu [3, Theorem 6]. There a weak converse in-
equality was established as well. The corresponding one-term strong converse
inequality and the characterization of the K-functional by the Ditzian-Totik
modulus were proved by Gonska and Zhou [34]. Mache [45] established the
direct estimate for the Kantorovich operator and a weak converse one in the
case w = φ2ℓ and s = 2ℓ, ℓ ∈ N+. All those results were obtained in the
Lp-norm, 1 ≤ p ≤ ∞.

Weighted simultaneous approximation by iter-

ated Boolean sums of Bernstein operators

One way to increase the approximation rate of the Bernstein operator Bn is
to form its iterated Boolean sums Br,n : C[0, 1]→ C[0, 1], defined by

Br,n := I − (I −Bn)
r,

where I stands for the identity and r ∈ N+. In [46] it was shown that their
saturation order is n−r.

An important and nice characterization of the error of Br,n was given by
Gonska ans Zhou [33]. They established the following upper estimate

(20) ∥Br,nf − f∥ ≤ c

(
ω2r
φ (f, n−1/2) +

1

nr
∥f∥

)
, f ∈ C[0, 1], n ∈ N+.

A Stechkin-type converse inequality was also proved. That enabled them to
deduce the trivial class of the operator and a big O equivalence characteri-
zation of the error.

Since Bn preserve the algebraic polynomials of degree at most 1, replac-
ing in (20) f with f − p1, where p1 is the polynomial of degree 1 of best
approximation of f in the uniform norm on [0, 1], we immediately arrive at

(21) ∥Br,nf − f∥ ≤ c

(
ω2r
φ (f, n−1/2) +

1

nr
E1(f)

)
, f ∈ C[0, 1], n ∈ N+,
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where E1(f) denotes the best approximation of f by algebraic polynomials
of degree 1 in the uniform norm on [0, 1].

Later on Ding and Cao [13] characterized the error of the multivariate
generalization of Br,n on the simplex. In the univariate case, the direct in-
equality they proved is of the form

(22) ∥Br,nf − f∥ ≤ cKD
r,0(f, n

−r), f ∈ C[0, 1], n ∈ N+,

where
KD

r,0(f, t) := inf
g∈C2r[0,1]

{∥f − g∥+ t∥Drg∥}

with, to recall, Dg := φ2g′′ and φ(x) :=
√

x(1− x).
They also proved a strong converse inequality of type D (in the terminol-

ogy introduced in [14]), that is

KD
r,0(f, n

−r) ≤ c max
k≥n
∥Br,kf − f∥, f ∈ C[0, 1], n ∈ N+.

However, as we show,

KD
r,0(f, t) ∼ K2r,φ(f, t) + tE1(f), 0 < t ≤ 1.

Therefore, taking also into account (17), we see that the function character-
istics on the right side of (21) and (22) are equivalent.

In addition, we establish that

KD
r,0(f, n

−r) ∼ ω2r
φ (f, n−1/2) + ω2

φ(f, n
−r/2), f ∈ C[0, 1], n ≥ r2.

When we apply it in (22), we get the direct estimate

∥Br,nf − f∥ ≤ c
(
ω2r
φ (f, n−1/2) + ω2

φ(f, n
−r/2)

)
, f ∈ C[0, 1], n ≥ r2.

We demonstrate that results on the simultaneous approximation by Bn

easily yield (20). In addition, we prove the following strong converse inequal-
ity, which improves the earlier converse estimates.

Theorem 4.2. Let r ∈ N+. Then there exists R ∈ N+ such that for all
f ∈ C[0, 1] and k, n ∈ N+ with k ≥ Rn there holds

KD
r,0(f, n

−r) ≤ c

(
k

n

)r

(∥Br,nf − f∥+ ∥Br,kf − f∥) .
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In particular,

KD
r,0(f, n

−r) ≤ c (∥Br,nf − f∥+ ∥Br,Rnf − f∥) .

The value of the constant c is independent of f , n and k.

In order to prove this theorem we apply [14, Theorem 3.2]. To this end,
we verify the following Voronovskaya- and Bernstein-type inequalities:

(a)

∥∥∥∥Br,ng − g − (−1)r−1

(2n)r
Drg

∥∥∥∥ ≤ c

nr+1
∥Dr+1g∥, g ∈ C2r+2[0, 1];

(b) ∥DrBr,nf∥ ≤ c nr∥f∥, f ∈ C[0, 1];

(c) ∥Dr+1Br,ng∥ ≤ c n∥Drg∥, g ∈ C2r[0, 1].

We characterize the error of the weighted simultaneous approximation by
Br,n by means of the K-functional

KD
r,s(f, t)w := inf

g∈C2r+s[0,1]

{
∥w(f − g(s))∥+ t∥w(Drg)(s)∥

}
.

We establish the following direct estimate.

Theorem 4.3. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (11) as 0 ≤
γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈
L∞[0, 1], and all n ∈ N+ there holds

∥w(Br,nf − f)(s)∥ ≤ cKD
r,s(f

(s), n−r)w.

This estimate can be simplified. We characterize the involvedK-functional
KD

r,s(f, t)w by the simpler ones K2r,φ(f, t)w and Km(f, t)w.

Theorem 4.4. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (11) with
0 < γ0, γ1 < s. Then for all wf ∈ L∞[0, 1] and 0 < t ≤ 1 there holds

KD
r,s(f, t)w ∼

K2r,φ(f, t)w +K1(f, t)w, s = 1,

K2r,φ(f, t)w + t ∥wf∥, s ≥ 2.

The result in the case w = 1 is of a different form.

Theorem 4.5. Let r, s ∈ N+. Then for all f ∈ C[0, 1] and 0 < t ≤ 1 there
holds

KD
r,s(f, t)1 ∼

K2r,φ(f, t) +Kr(f, t) +K1(f, t), s = 1,

K2r,φ(f, t) +Kr(f, t) + t ∥f∥, s ≥ 2.
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Further, by virtue of (16) and (17), we get the following Jackson-type
estimates.

Theorem 4.7. Let r, s ∈ N+ and w = w(γ0, γ1) be given by (11) as 0 <
γ0, γ1 < s. Then for all f ∈ C[0, 1] such that f ∈ ACs−1

loc (0, 1) and wf (s) ∈
L∞[0, 1], and all n ∈ N+ there holds

∥w(Br,nf − f)(s)∥ ≤ c


ω2r
φ (f ′, n−1/2)w + ω1(f

′, n−r)w, s = 1,

ω2r
φ (f (s), n−1/2)w +

1

nr
∥wf (s)∥, s ≥ 2.

Theorem 4.8. Let r, s ∈ N+. Then for all f ∈ Cs[0, 1] and n ∈ N+ there
holds

∥(Br,nf − f)(s)∥ ≤ c


ω2r
φ (f ′, n−1/2) + ωr(f

′, n−1) + ω1(f
′, n−r), s = 1,

ω2r
φ (f (s), n−1/2) + ωr(f

(s), n−1) +
1

nr
∥f (s)∥, s ≥ 2.

The direct estimates above are sharp. We verify a strong converse in-
equality that matches the direct one in Theorem 4.3.

Theorem 4.10. Let r, s ∈ N+ and w := w(γ0, γ1) be given by (11) as
0 ≤ γ0, γ1 < s. Then there exists R ∈ N+ such that for all f ∈ C[0, 1] with
f ∈ ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all k, n ∈ N+ with k ≥ Rn there
holds

Kr,s(f
(s), n−r)w ≤ c

(
k

n

)r (
∥w(Br,nf − f)(s)∥+ ∥w(Br,kf − f)(s)∥

)
.

In particular,

Kr,s(f
(s), n−r)w ≤ c

(
∥w(Br,nf − f)(s)∥+ ∥w(Br,Rnf − f)(s)∥

)
.

The value of the constant c is independent of f , n and k.

The proof of Theorems 4.3 and 4.10 is based on the extension of Propo-
sitions 3.14, 3.17, 3.20 and 3.23 to Br,n. This extension yields:

(a) ∥w(Br,nf − f)(s)∥ ≤ c

nr
∥w(Drf)(s)∥, f ∈ C2r+s[0, 1];

(b)

∥∥∥∥∥w
(
Br,nf − f − (−1)r−1

(2n)r
Drf

)(s)
∥∥∥∥∥ ≤ c

nr+1
∥w(Dr+1f)(s)∥,

f ∈ C2r+s+2[0, 1];
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(c) ∥w(DrBr,nf)(s)∥ ≤ c nr∥wf (s)∥, f ∈ C[0, 1], f ∈ ACs−1
loc (0, 1),

wf (s) ∈ L∞[0, 1];

(d) ∥w(Dr+1Br,nf)(s)∥ ≤ c n ∥w(Drf)(s)∥, f ∈ C2r+s[0, 1].

We still assume that 0 ≤ γ0, γ1 < s for w := w(γ0, γ1), given in (11).
Then Theorems 4.3 and 4.10 follow from [14, Theorems 3.2 and 3.4].

Analogously to the simultaneous approximation by the Kantorovich op-
erator, we derive from Theorems 4.3 and 4.10 the following result for the
iterated Boolean sums of K

⟨m⟩
n of (19)

K⟨m⟩
r,n := I − (I −K⟨m⟩

n )r.

Theorem 4.25 Let m, r ∈ N+, s ∈ N0 and w := w(γ0, γ1) be given by (11)
as 0 ≤ γ0, γ1 < s +m. Then for all f ∈ L∞[0, 1] such that f ∈ ACs−1

loc (0, 1)
and wf (s) ∈ L∞[0, 1], and all n ∈ N+ there holds

∥w(K⟨m⟩
r,n f − f)(s)∥ ≤ cKD

r,s+m(f
(s), n−r)w.

Conversely, there exists R ∈ N+ such that for all f ∈ L[0, 1] with f ∈
ACs−1

loc (0, 1) and wf (s) ∈ L∞[0, 1], and all ℓ, n ∈ N+ with ℓ ≥ Rn there holds

KD
r,s+m(f

(s), n−r)w ≤ c

(
k

n

)r (
∥w(K⟨m⟩

r,n f − f)(s)∥+ ∥w(K⟨m⟩
r,ℓ f − f)(s)∥

)
.

In particular,

KD
r,s+m(f

(s), n−r)w ≤ c
(
∥w(K⟨m⟩

r,n f − f)(s)∥+ ∥w(K⟨m⟩
r,Rnf − f)(s)∥

)
.

The value of the constant c is independent of f , n and ℓ.

In the statement of the last theorem the condition f ∈ ACs−1
loc (0, 1) is to

be ignored for s = 0.

Simultaneous approximation by Bernstein poly-

nomials with integer coefficients

Bernstein [5] posed the problem of determining to what extent the require-
ment on the coefficients of the algebraic polynomials to be integers affects the
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order of the best algebraic approximation in the uniform norm. To solve this
problem Kantorovich [39] (or e.g. [44, Chapter 2, Theorem 4.1]) introduced
an integer modification of Bn. It is given by

B̃n(f)(x) :=
n∑

k=0

[
f

(
k

n

)(
n

k

)]
xk(1− x)n−k.

Above [α] denotes the largest integer that is less than or equal to the real α.
L. Kantorovich showed that if f ∈ C[0, 1] is such that f(0), f(1) ∈ Z, then

lim
n→∞

∥B̃n(f)− f∥ = 0.

Clearly, the conditions f(0), f(1) ∈ Z are also necessary in order to have

limn→∞ B̃n(f)(0) = f(0) and limn→∞ B̃n(f)(1) = f(1), respectively.
Following L. Kantorovich and applying (4), we get a direct estimate of

the error of B̃n for f ∈ C[0, 1] with f(0), f(1) ∈ Z. For x ∈ [0, 1] and n ∈ N+

we have

(23) |B̃n(f)(x)− f(x)| ≤ c ω2
φ(f, n

−1/2) +
1

n
.

We show that the simultaneous approximation by B̃n(f) satisfies a sim-
ilar estimate. Before stating that result, let us note that another integer
modification of Bnf possesses actually better properties regarding simulta-
neous approximation. In it, instead of the integer part [α] we use the nearest
integer ⟨α⟩ to the real α. More precisely, if α ∈ R is not the arithmetic
mean of two consecutive integers, we set ⟨α⟩ to be the integer at which the
minimum minm∈Z |α−m| is attained. When α is right in the middle between
two consecutive integers, we can define ⟨α⟩ to be either of them even without
following a given rule. The results we prove are valid regardless of our choice
in this case.

We denote that integer modification of the Bernstein polynomial by B̂n(f),
that is, we set

B̂n(f)(x) :=
n∑

k=0

〈
f

(
k

n

)(
n

k

)〉
xk(1− x)n−k

for f ∈ C[0, 1] and x ∈ [0, 1].
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Similarly to (23), we have

(24) ∥B̂n(f)− f∥ ≤ c ω2
φ(f, n

−1/2) +
1

2n

for all f ∈ C[0, 1] with f(0), f(1) ∈ Z and all n ∈ N+.
Combining (23) and (24) with (9), we arrive at the characterization

c−1

(
ω2
φ(f, n

−1/2) +
1

n

)
≤ ∥B̃n(f)− f∥+ 1

n

≤ c

(
ω2
φ(f, n

−1/2) +
1

n

)
and

c−1

(
ω2
φ(f, n

−1/2) +
1

n

)
≤ ∥B̂n(f)− f∥+ 1

n

≤ c

(
ω2
φ(f, n

−1/2) +
1

n

)
valid for all f ∈ C[0, 1] with f(0), f(1) ∈ Z and all n ≥ n0 with some n0,
which is independent of f .

Consequently, if 0 < α ≤ 1, then

∥B̃n(f)− f∥ = O(n−α) ⇐⇒ ω2
φ(f, h) = O(h2α)(25)

and

∥B̂n(f)− f∥ = O(n−α) ⇐⇒ ω2
φ(f, h) = O(h2α),(26)

provided that f(0), f(1) ∈ Z; we assume f ∈ C[0, 1].

In addition, we prove that the approximation processes generated by B̃n

and B̂n in the uniform norm on [0, 1] are saturated with the saturation rate

of 1/n and if ∥B̃n(f)− f∥ = o(1/n) or ∥B̂n(f)− f∥ = o(1/n), then, similarly

to the Bernstein operator, we have that B̃n(f) = B̂n(f) = f and f is a
polynomial of the type px + q, where p, q ∈ Z. As it follows from (25)-
(26), their saturation class consists of those functions f ∈ AC[0, 1] such that
f(0), f(1) ∈ Z, f ′ ∈ ACloc(0, 1) and φ2f ′′ ∈ L∞[0, 1].

Let us explicitly note that for any fixed n ≥ 2 the operator B̃n : C[0, 1]→
C[0, 1] is not bounded in the sense that there does not exist a constant M
such that

∥B̃nf∥ ≤M ∥f∥ ∀ f ∈ C[0, 1].
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Therefore we cannot drop the quantity 1/n on the right-hand side of the
estimate (23), or replace it with c ∥f∥n−1. That operator is not continuous

either. On the other hand, B̂n is bounded but not continuous. Both operators
are not linear. To emphasize the latter we write B̃n(f) and B̂n(f), not B̃nf

and B̂nf .
We verify that the integer forms of the Bernstein polynomials B̃n and B̂n

possess the property of simultaneous approximation and establish a direct
estimate of the rate of approximation.

Theorem 5.1. Let s ∈ N+. Let f ∈ Cs[0, 1] be such that

f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s.

Let also there exist n0 ∈ N+, n0 ≥ s, such that

f

(
k

n

)
≥ f(0) +

k

n
f ′(0), k = 1, . . . , s, n ≥ n0,

f

(
k

n

)
≥ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1, n ≥ n0.

Then for n ≥ n0 there holds

∥(B̃n(f))
(s) − f (s)∥

≤ c


ω2
φ(f

′, n−1/2) + ω1(f
′, n−1) +

1

n
, s = 1,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥+ 1

n
, s ≥ 2.

The value of the constant c is independent of f and n.

Remark 5.3. An analogous result holds for the integer form of the Bernstein
operator defined by means of the ceiling function instead of the integer part.
Then we assume that the reverse inequalities for f(k/n) hold, that is,

f

(
k

n

)
≤ f(0) +

k

n
f ′(0), k = 1, . . . , s, n ≥ n0,

f

(
k

n

)
≤ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1, n ≥ n0.

The estimates of the rate of convergence for B̂n are valid under weaker
assumptions.
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Theorem 5.4. Let s ∈ N+. Let f ∈ Cs[0, 1] be such that

f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s.

Then

∥(B̂n(f))
(s) − f (s)∥

≤ c


ω2
φ(f

′, n−1/2) + ω1(f
′, n−1) +

1

n
, s = 1,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥+ 1

n
, s ≥ 2.

The value of the constant c is independent of f and n.

In addition, we show that the assumptions made in Theorems 5.1 and 5.4
are necessary in order to have uniform simultaneous approximation. Con-
cerning the difference between the set of conditions on the derivatives for
s = 1 and s ≥ 2, let us note that B̃n and B̂n preserve the polynomials of
the form p x + q, where p, q ∈ Z (that is verified just as for the Bernstein
operator). Therefore it is not surprising that there are not any restrictions
on the values of the function and its first derivative at the endpoints except
that they must be integers. However, the requirement that the derivatives of
order 2 and higher must be equal to 0 at the endpoints is quite unexpected.
Technically, it is related to the fact that

(
k
n

)s (n
k

)
∈ Z for all k and n iff s = 0

or s = 1.
We establish the following weak converse relations that complement the

direct estimates in Theorems 5.1 and 5.4.

Theorem 5.5. Let s ∈ N+ and 0 < α < 1. Let f ∈ Cs[0, 1], f(0), f(1) ∈ Z,
and

∥(B̃n(f))
(s) − f (s)∥ = O(n−α) or ∥(B̂n(f))

(s) − f (s)∥ = O(n−α).

Then
ω2
φ(f

(s), h) = O(h2α) and ω1(f
(s), h) = O(hα).

The proof is based on application of the Berens-Lorentz Lemma (see [2],
or e.g. [12, Chapter 10, Lemma 5.2])

Combining this theorem with Theorems 5.1 and 5.4, we get the following
two big O equivalence relations.
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Corollary 5.6. Let s ∈ N+ and 0 < α < 1. Let f ∈ Cs[0, 1] be such that
f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s. Let also
there exist n0 ∈ N+, n0 ≥ s, such that

f

(
k

n

)
≥ f(0) +

k

n
f ′(0), k = 1, . . . , s, n ≥ n0,

f

(
k

n

)
≥ f(1)−

(
1− k

n

)
f ′(1), k = n− s, . . . , n− 1, n ≥ n0.

Then

∥(B̃n(f))
(s) − f (s)∥ = O(n−α)

⇐⇒ ω2
φ(f

(s), h) = O(h2α) and ω1(f
(s), h) = O(hα).

Corollary 5.7. Let s ∈ N+ and 0 < α < 1. Let f ∈ Cs[0, 1] be such that
f(0), f(1), f ′(0), f ′(1) ∈ Z and f (i)(0) = f (i)(1) = 0, i = 2, . . . , s. Then

∥(B̂n(f))
(s) − f (s)∥ = O(n−α)

⇐⇒ ω2
φ(f

(s), h) = O(h2α) and ω1(f
(s), h) = O(hα).

The proof of the results above is based on the relation between (Bnf)
(s)

and (B̃n(f))
(s), given by

∥(Bnf)
(s) − (B̃n(f))

(s)∥ ≤ c

(
ω1(f

(s), n−1) +
1

n

)
and similarly between (Bnf)

(s) and (B̂n(f))
(s) under the assumptions of The-

orems 5.1 and 5.4, respectively.
Following the relation between the Kantorovich polynomials and the

Bernstein polynomials given in (18), we define

K̂n(f)(x) :=
(
B̂n+1(F )(x)

)′
, F (x) :=

∫ x

0

f(t) dt,

where f ∈ L[0, 1] and x ∈ [0, 1].
Then we have

K̂n(f)(x) =
n∑

k=0

(
(k + 1)

〈∫ k+1
n+1

0

f(t) dt

(
n+ 1

k + 1

)〉

− (n− k + 1)

〈∫ k
n+1

0

f(t) dt

(
n+ 1

k

)〉)
xk(1− x)n−k.
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Now, Theorem 5.4 implies the following direct estimate of the rate of
simultaneous approximation by K̂n.

Theorem 5.17Let s ∈ N0. Let f ∈ Cs[0, 1] be such that∫ 1

0

f(t) dt ∈ Z, f(0), f(1) ∈ Z,

f (i)(0) = f (i)(1) = 0, i = 1, . . . , s.

Then

∥(K̂n(f))
(s) − f (s)∥

≤ c


ω2
φ(f, n

−1/2) + ω1(f, n
−1) +

1

n
, s = 0,

ω2
φ(f

(s), n−1/2) + ω1(f
(s), n−1) +

1

n
∥f (s)∥+ 1

n
, s ≥ 1.

The value of the constant c is independent of f and n.

Clearly, the only advantage of K̂n to B̂n could be that it is defined by
integrals of f rather than its values, which is useful in case the former are
more readily available than the latter.

Direct and converse Voronovskaya estimates

for the Bernstein operator

We estimate the rate of the convergence in the Voronovskaya’s theorem [54],
which states that if f ∈ C2[0, 1], then

lim
n→∞

n(Bnf(x)− f(x)) =
x(1− x)

2
f ′′(x)

uniformly on [0, 1].
We introduce the linear operator

Dnf(x) := n(Bnf(x)− f(x))

and refer to it as the Voronovskaya operator.
We consider it on the Sobolev-type function spaces

Wm
∞(φ)[0, 1] := {f ∈ C[0, 1] : f ∈ ACm−1

loc (0, 1), φmf (m) ∈ L∞[0, 1]},
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where, to recall, φ(x) :=
√

x(1− x). We have Wm+1
∞ (φ)[0, 1] ⊂ Wm

∞(φ)[0, 1].

For f ∈ W 2
∞(φ)[0, 1] we set Df(x) := φ2(x)

2
f ′′(x).

It is known that (see [14, Lemma 8.3])∥∥∥∥Bnf − f − 1

2n
φ2f ′′

∥∥∥∥ ≤ c

n3/2
∥φ3f (3)∥, f ∈ W 3

∞(φ)[0, 1],

which can be written in the form

∥Dnf −Df∥ ≤
c

n1/2
∥φ3f (3)∥, f ∈ W 3

∞(φ)[0, 1].

We show, assuming a higher degree of smoothness, that∥∥∥∥Bnf − f − 1

2n
φ2f ′′

∥∥∥∥ ≤ c

n2

(
∥φ2f (3)∥+ ∥φ4f (4)∥

)
, f ∈ W 4

∞(φ)[0, 1],

that is,

∥Dnf −Df∥ ≤
c

n

(
∥φ2f (3)∥+ ∥φ4f (4)∥

)
.

That slightly improves the estimate∥∥∥∥Bnf − f − 1

2n
φ2f ′′

∥∥∥∥ ≤ c

n2

(
∥f (3)∥+ ∥f (4)∥

)
, f ∈ C4[0, 1],

established in [31].
To state our main results about the convergence rate of Dn we use the

K-functionals K2,φ(F, t)w defined in (12) and

K̃(F, t) := inf
g∈W 4

∞(φ)[0,1]

{
∥F −Dg∥+ t

(
∥φ2g(3)∥+ ∥φ4g(4)∥

)}
.

We establish the following characterization of the rate of approximation
of Df by means of Dnf .

Theorem 6.1. For all f ∈ W 2
∞(φ)[0, 1] and all n ∈ N+ there holds

(27) ∥Dnf −Df∥ ≤ c K̃(Df, n−1) ≤ c

(
K2,φ(f

′′, n−1)φ2 +
1

n
∥φ2f ′′∥

)
.

Conversely, for all f ∈ W 2
∞(φ)[0, 1] and all k, n ∈ N+ there holds

(28) K2,φ(f
′′, n−1)φ2 ≤ 2 ∥Dkf −Df∥+ c

k

n
K2,φ(f

′′, k−1)φ2 +
c

n
∥φ2f ′′∥.
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The value of the constant c is independent of f , n and k.

The above two estimates can also be written in the form

(29)

∥∥∥∥Bnf − f − 1

2n
φ2f ′′

∥∥∥∥ ≤ c

n
K̃(Df, n−1)

≤ c

n
K2,φ(f

′′, n−1)φ2 +
c

n2
∥φ2f ′′∥

and

(30)
c

k
K2,φ(f

′′, n−1)φ2 ≤ 2

∥∥∥∥Bkf − f − 1

2k
φ2f ′′

∥∥∥∥
+

c

n
K2,φ(f

′′, k−1)φ2 +
c

nk
∥φ2f ′′∥.

Estimates (27) and (29) can be considered as direct Voronovskaya inequali-
ties, and estimates (28) and (30) as weak converse Voronovskaya inequalities.

Similar direct point-wise estimates were established in [28, Theorem 3.2]
and [52, Theorem 2]. The assumptions on the functions made there are more
restrictive. However, the first of these results is very general and both give
explicit values to the absolute constant.

We derive the following equivalence relation from Theorem 6.1.

Corollary 6.3. Let f ∈ W 2
∞(φ)[0, 1] and 0 < α < 1. Then

∥Dnf −Df∥ = O(n−α) ⇐⇒ K2,φ(f
′′, t)φ2 = O(tα).

Bernstein [6] proved that if f ∈ C2r[0, 1], then

lim
n→∞

nr

(
Bnf(x)− f(x)−

2r∑
i=1

Bn

(
(◦ − x)i

)
(x)

f (i)(x)

i!

)
= 0

uniformly on [0, 1] (see also [51]). A quantitative estimate of this convergence
for positive linear operators on C[0, 1] was established by Gonska [28].

Setting r = 2 above we have for f ∈ C4[0, 1]

(31) lim
n→∞

n(Dnf(x)−Df(x)) = D′f(x)

uniformly on [0, 1], where

D′f(x) :=
(1− 2x)φ2(x)

3!
f (3)(x) +

3φ4(x)

4!
f (4)(x).
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This shows that the operator Dn is saturated, as its saturation order is n−1

and its trivial class is the set of the algebraic polynomials of degree at most
2.

We establish the following quantitative estimate of the convergence in
(31).

Theorem 6.4. For all f ∈ W 4
∞(φ)[0, 1] and all n ∈ N+ there holds∥∥∥∥Dnf −Df −

1

n
D′f

∥∥∥∥ ≤ c

n
K2,φ2(f (4), n−1)φ4 +

c

n2
∥φ4f (4)∥.

The value of the constant c is independent of f and n.

Instead of K2,φ(F, t)φr one can use the weighted Ditzian-Totik modulus of
smoothness ω2

φ(F, t)φr , defined in (15) (see also (17)). In fact, the weighted
Ditzian-Totik main-part modulus of smoothness allows us to restate the char-
acterization in Corollary 6.3 in a simpler form.

Corollary 6.5. Let f ∈ W 2
∞(φ)[0, 1] and 0 < α < 1. Then

∥Dnf −Df∥ = O(n−α) ⇐⇒ ∥φ2∆̄2
hφf

′′∥[2h2,1−2h2] = O(h2α).

Embedding inequalities

To establish the results, related to the simultaneous approximation by the
Bernstein operator, its iterated Boolean sums and the Voronovskaya opera-
tor, we extensively use inequalities between the norms of the derivatives of
the functions as well as between them and the norms of the values of the dif-
ferential operator that is associated with the approximation by the iterated
Boolean sums of the Bernstein operator, (d/dx)sDr, and, in particular, by
the Bernstein operator itself.

When we consider the weighted simultaneous approximation by the iter-
ated Boolean sums of Bn, we do not establish the estimates we need directly
in terms of the differential operator (d/dx)sDr, because it is rather involved.
Instead, we do so in terms of the norms of the components into which (Drg)(s)

expands. They are of the form qφ2ig(j), where q is an algebraic polynomial,
which can be ignored, and i, j ∈ N0. Then, making use of certain embedding
inequalities, we return to (Drg)(s). That allows us not only to get round
the technical difficulties of dealing with (d/dx)sDr, but also to derive almost
simultaneously both characterizations of ∥w(Br,nf −f)(s)∥: the more natural
one by KD

r,s(f, t)w and the more useful one by K2r,φ(f, t)w and Km(f, t)w.
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In fact, applying appropriate embedding inequalities is typical for such
problems in Approximation Theory; see e.g. [3, Lemmas 2, 3 and 4], [15,
p. 135], [33, Lemma 2] and [34, pp. 127-128].

It is well-known that (e.g. [12, Chapter 2, Theorem 5.6])

∥f (j)∥J ≤ c
(
∥f∥J + ∥f (m)∥J

)
, j = 0, . . . ,m,

where f ∈ Wm
∞(J) and J is an interval on the real line. The value of the

constant c is independent of f .
Besides this inequality, we establish and use several more. They are stated

in the following two propositions.

Proposition 2.1. Let j,m ∈ N0 as j < m. Let wµ := w(γµ,0, γµ,1) be given
by (11) with γµ,0, γµ,1 > 0 for µ = 1, 2 and let γ2,ν ≤ γ1,ν +m− j for ν = 0, 1.
Let also g ∈ ACm−1

loc (0, 1) be such that w2g
(m) ∈ L∞[0, 1]. Then

∥w1g
(j)∥ ≤ c

(
∥g∥[1/4,3/4] + ∥w2g

(m)∥
)
.

The value of the constant c is independent of g.

Proposition 2.6 Let r, s ∈ N+ and w := w(γ0, γ1) be given by (11) as
0 ≤ γ0, γ1 < s. Set js := 1 if s = 1, and js := 0 otherwise. Then for all
g ∈ AC2r+s−1[0, 1] there hold

∥wg(j+s)∥ ≤ c ∥w(Drg)(s)∥, j = js, . . . , r,

and

∥wφ2rg(2r+s)∥ ≤ c ∥w(Drg)(s)∥.

The value of the constant c is independent of g.

Organization of the contents of the disserta-

tion

In Chapter 1 we collect the definitions and the basic properties of the stan-
dard K-functionals and moduli of smoothness that are used in problems of
the type we consider.

In Chapter 2 we establish inequalities between the weighted essential
supremum norms of the derivatives of the functions as well as between them
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and the norms of the values of the differential operator that is associated with
the approximation by the iterated Boolean sums of the Bernstein operator,
and, in particular, by the Bernstein operator itself. The results presented in
this chapter were published in [17, 18, 24].

In Chapter 3 we establish matching direct and one- or two-term strong
converse estimates of the rate of the simultaneous approximation by the
Bernstein operator in the weighted essential supremum norm. The material
presented in this chapter was published in [18, 19].

In Chapter 4 most of the estimates of the previous chapter are extended
to iterated Boolean sums of the Bernstein operator. The results presented in
this chapter were published in [16, 17, 18, 22, 23].

In Chapter 5 we establish direct and weak converse estimates for the
simultaneous approximation by two modifications of the Bernstein polyno-
mials, which provide approximation by algebraic polynomials with integer
coefficients. The results presented in this chapter were published in [20, 21].

In Chapter 6 we characterize the rate of the convergence in the Voronov-
skaya’s theorem. The results presented in this chapter were published in [24],
written jointly with I. Gadjev.
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[41] A. J. López-Moreno, J. Mart́ınez-Moreno, F. J. Muñoz-Delgado, Asymp-
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